钦定四库全书

新法算书卷三十九   明 徐光启等 撰五纬厯指卷四【火星】

按古天图火星属第四重天在太阳之上土木之下今因新测及新图又博考前贤遗论凡会合伏太阳则在其上凡夕退冲太阳则在其下而于地更近也

火星视行絜他星之行更竒或行逾二百余日不及天周一宫或越四旬日而行过一宫不达其道者曰无法之行也古比利尼阿【西大士】曰火星之行不能测度言甚难也勒爵【亦西精厯之士】测火星之曲路欲求作图永为世法厯年乆而无成功自怼虚费功力闷而几毙后世之士益敏学如第谷二十年中心恒不倦每夜密密测算谋作图法未竟而毙其门人格白尔续之着为火星行图一部分五卷七十二章而定其经纬髙低之行然但穷其理未有成表测法虽明未解其用阙然未备后马日诺及色物利诺二人相继作表而用法始全兹本指以古今讲测诸法择其最要者译之

如土木二星等法测火星本天两心差及其最髙必用火星冲太阳测盖以是时无岁行之差而但有本天之盈缩差也凡十有五章如左

测火星最高及两心差先法【第一章】

用古三测与测土木二星法同

第一测总积四千八百四十三年为汉顺帝永建五年庚午十二月十一日丑初【西厯本地】测火星经度为实沈宫二十一度○分于时太阳平行躔其对冲宫度为析木宫同度【测星算曰二者并重彼此测算相比可得其相对之时不谬】

第二测总积四千八百四十八年为汉顺帝阳嘉四年乙亥二月二十一日亥初【西厯】本地测火星经度在鹑火宫二十八度二十分于时太阳平行躔其冲?枵宫度分同【以算得之】

第三测总积四千八百五十二年为汉顺帝永和四年己卯五月二十七日亥正【西厯】本地测火星经度在析木宫二度三十四分于时太阳平行躔其冲实沈宫同度分

前二测中积为一千五百二十九日二十二时【小时】此时依前所定平行数得火星行八十一度四十四分全周外又两所测火星之视经度差【从实沈宫某度至鹑火某度】为六十七度五十分平行视行相减得十三度五十四分为均数也平行大视行小【用不同心圏】可知二测在最髙之左右

后二测中积一千五百五十六日四刻此时依平行率火星平行全周外为九十五度二十八分视行【两测两经度之较】九十三度四十四分两行相减得较为一度四十四分乃均数也均数小因知两测并在最髙同方或左或右

以三测中积两行数及其较用不同心圏作图如土木二星等此三测置火星在本道下如本圜平面内测之不求其纬盖火星纬南北比土木二星更多又凡冲太阳其纬益大即测其经度者亦不得指为黄道度又不得为本道度然测法或用黄道度或本道度因其差有限不碍于算也故用如在一平面上

甲乙丙戊为火星本行之圏于黄道不同而于相交处任取甲为第一测火星所在从天顺数右行本圏上取前二测中积平行之度分即八十一度有竒至乙乙为第二测火星所在之处又顺天再数得后二测中积平行之度即九十五度有竒至丙丙为第三测火星所布之处也此本圏之心非地心乃火星平行圏之心又因上论甲乙二测在最髙左右则地心在本圏心下任取一防如丁为黄道之心【不知两心差故任取】从甲乙丙三测到丁作甲丁乙丁丙丁三线又丙丁引长到圏周如戊作戊申戊乙甲乙三线六线成各三角形如左

一乙丁戊形有戊角四十七度四十四分【乙丙弧之半数】有乙丁

戊角八十六度十六分【丁为地心

见乙丙两测视行相距为九十三度四十四分乃乙丁丙

角也乙丁戊为以满两直角之余】乙角自为

四十六度无分乙丁戊形中

有三角求三边之比例【用各角之】

【正?得其比例或置丁戊邉为全数求乙戊边】多禄某先定丁戊为全数求乙戊得一三八七二○

二甲丁戊形有甲戊丁角八十八度三十六分【甲乙丙弧之半数即一三测中积平行之半数】又有甲丁戊角十八度二十六分【一三测中积视行为甲丁丙角取其余】自有戊甲丁角甲戊丁形有三角再置戊丁为全数求甲戊边得三三○六九

三甲乙戊形有甲戊乙角四十度五十二分【一二测中积平行之半数或甲乙之半弧】又先推算甲戊戊乙两边求甲乙得一一五七三六【全数十万】

四算得甲乙甲戊戊乙三线为同类【丁戊常为全数十万】今甲乙线因为甲乙弧之?可得甲戊及戊丁两线?内之数若干及得甲戊弧若干法以甲乙弧八十一度之余求其

?为一三○八六○又先得

甲戊为三七三八八【用三率法甲乙

外数得?内数甲戊外数得若干?内数又丁戊若干内

数】戊丁为一一三○六六用

甲戊?求其弧得二十一度

五戊甲甲乙乙丙三弧并之得一百九十八度五十三分为周天之大半也则甲乙丙圈之心在于弧?之中置在己又作己丁两心线上至庚为火星道最髙下至辛为最低也

六因几何二卷五题庚巳【半径】方形与庚丁丁辛内矩形及己丁上方形并等又因三卷三十六题辛丁丁庚内矩形与戊丁丁丙内形亦为等今知戊丁丁丙若干【戊丙线即戊甲乙丙弧之通?为一九七二九六减去戊丁余八四二○三○】法两数相乘所得数内减去全数之方所余方根为二一八六一则己丁也乃地心与火星道之心相距之数【庚己半径为全数十万】

七从己与戊丙作垂线到圏周为己癸壬成己癸丁勾股形夫直角形有己丁边【上推】又有癸丁边【先得丙丁戊为一九七二九三

六其半为戊癸又先得戊丁线即两线之较为癸丁一四

四一八】

用法【测量首卷】求癸己丁角得四

十一度十五分乃壬辛弧也

【辛圈为最低之防】

八先有戊乙丙弧则其余【以满全周三百六十度】为一百六十一度○七分折半为壬丙弧也以壬丙减去壬辛弧之度数所余辛丙为三十九度一十九分则第三测火星在丙距辛最低之度数也或以半周天内减之得丙庚弧为一百四十度四十一分则第三测火星距庚最髙之度数也夫数内减去二三两测中平行之度【九十五度二十八分】余四十五度一十三分则庚乙弧也乃第二测火星在乙距最髙之数也又一二两测中平行数八十一度四十四分内减去庚乙弧余三十六度三十一分乃甲庚也则第一测火星距过最髙之数也

九试推各测有平行距最髙若干有两心差求其均数又用均圏如土木星等依图第一测推算得丁甲己【不同心圏上】角为六度十八分丁午巳【均圏上】为六度五十分第二

测推算得丁乙己为七度五

十分【不同心圏】丁申巳【均圏上】为八

度十三分第三测推算得丁

丙己【不同心圏】为九度二十七分

丁未己【均圏上】为八度三十七

十前二测均数为异类故加【不同心圏上】得十四度八分或【均圏上】得十五度○三分此二测推两均数比所测【十三度五十三分】数皆为多又二三测均数相减【同方故】得四十七分【不同心】或二十四分【均圏上】比所测【一度四十四分】皆少所得两心差或最髙处未真不足为准

十一多禄某见所算与测两数不合因更置别数厯厯试验而得其准始定火星最髙宜顺天移前五度二分又两心差为二○○○○分【全数为十万】用此数推算斯与所测相符而真合天矣今宗其法

十二巳午子形有己子【两心差半数】有子午【均圏半径全数十万】有午巳子角【甲庚弧或庚巳午角以满半周之余】求己午子角依法得三度四十八分次子丁午角形有午子丁角【先有戊己庚角次得巳午子角两数相减

得午子巳角其余为午子丁角】有子丁及子

午【半径】两边求丁午子角为三

度十三分两均角数并之得

七度三分减于甲己庚角余

三十四度三十分乃人目见

火星第一测距最髙庚之度数也

十三第二测星在乙用三角形法如上一测求巳申丁角【均圏上】得六度五十一分减于乙己庚角余三十三度二十分乃人目见星距最髙之度数

第三测星在

丙推算己未

丁角得八度

三十四分加

于丙巳辛角

得五十二度五十五分乃人目见星距最髙之冲

十四前两测各均数相并【凡星在最髙同方均数为同类宜相减星在异方均数为异类宜相并同类者乃平行比视行或大或小盖从最髙起算至其冲平行为大视行为小均数为减若从最低起算则平行为小视行为大均数应加两均数同类以得中积均宜相减异则宜加】

得十三度五十四分必与所测合又两测距最髙数并得六十九度四十三分亦与测合

十五后二测两均数相减存一度四十三分又距最髙两数相减余九十三度四十五分咸合于天此多禄某法得其准定为其率之本也

十六第三测星视行测在析木宫二度三十四分又距最髙冲一百二十七度○五分即逆数之得最髙在鹑首二十五度二十九分古者未觉最髙之行近世始明其理得真最髙越年多而行稍移宜借用谷白泥法古今两法相比乃为全也谷白泥亦用三测如后

测火星最高及两心差后法【第二章】

谷白泥测算必用其图

第一测总积六千二百二十九年为正徳十一年丙子【西厯】六月初五日丑初【本方】测火星在太阳平行之冲距娄宿第二星【谷白泥法以此恒星为界】为二百三十五度三十三分算宫得火星在析木宫二十二度四十六分

第二测总积六千二百三十一年为正徳十三年戊寅【西厯】十二月十二日戌正测火星冲太阳平行得距娄宿第二星为六十三度○二分算宫得鹑首宫初度十八分

第三测总积六千二百三十六年为嘉靖二年癸未【西厯】二月二十二日卯初测火星冲太阳平行得距娄宿第二星为一百三十三度二十分算宫得鹑尾宫十度四十一分

前二测中积为二千三百八十一日有七十二刻依平行率得火星平行行一百六十八度○七分视行行一百八十七度二十九分两数相减得均数为十九度二十二分

后二测中积为一千五百三十二日有四十九刻火星平行行八十三度○分视行行七十度一十八分两行之较为十二度四十二分均数也

先用一不同心圏及小均圏如谷白泥本法作图图如土木星等丁为地心己本圏心己丁相距本圏半径【设万分】为一千四百六十甲为第一测顺天数一百六十八度余止乙乙为第二测之处又加八十三度余止丙丙为第三测之处一二测中均数大则两测之各均必为异类两测必在两心线之左右二三测均数亦大

必亦为异类两测亦在两心

线之左右二三测平行小视

行大指在最髙旁

置小均圏半径为五百分【全数

如上】第一测距最髙为一百二

十五度二十九分【庚己甲角】第二测距最髙为六十六度十八分【庚巳乙角】第三测距最髙为十六分三十六分【庚己丙角】此数屡测屡算谷白泥所定因其恰于天脗合今借其数试之

己丁甲形有己甲半径有己丁边及丁己甲角【庚己甲之余】求己甲丁角得七度二十四分减于庚己甲角内得庚丁甲角又求丁甲边得九二二九【谷白泥法先以均数或加或减于先引数得次引数今因其数宜减减之】

丁甲午形有甲角及午甲甲丁两边求午丁甲角得二度十二分次均数也两均并得九度三十六分全均数也

己丁乙形如前求各均数并之得九度四十七分第一第二测两均数为异类则相加得十九度二十三分测符所算指各数合天

己丁丙形如上算得总均数

为二度五十六分第二第三

测之两均亦为异类相加得

十二度四十三分亦合于天

又第一测平行距最髙一百二十五度有竒减均数【凡星在最髙后半周内宜减在最髙前半周内宜加】得一百一十五度十三分第二测【顺天数】距最髙为二百九十三度四十二分加均数得三百○三度二十二分第三测距最髙十六度三十六分减均数得十三度四十分

第三测时火星距娄宿第二星为一百三十三度二十分减三测距最髙得一百一十九度四十分乃最髙距娄宿二星之度又加二十七度二十一分【当时娄宿二星距降娄宫初度】得一百四十七度○一分或鹑火宫二十七度一分又火星最髙之处也

多禄某第三测为总积四千八百五十二年谷白泥第三测总积为六千二百二十六年两测差一千三百八十四年此时火星最髙行三十一度余比恒星之行多十度余可识火星天之最髙有本行与恒星迥异大统厯及回回厯俱未之觉也其细率条析于左

用古今两测试平行之率【第三章】

古多禄某第三测距谷白泥第三测为一千三百八十四平年有二百五十一日三十二刻因本厯第一卷所定率得此时火星冲太阳平行为六百四十八次又五度三十八分二十四秒

两测有同类之加减均数乃减类也两测两均数【古者为二度五十六分今者为八度三十四分】之较为五度三十八分与所算等【冲太阳之圴数为当时火星未到小轮相近之处今均数为大言今测比古者过五度】

用两测中积火星冲太阳之数以全周数乘之加五度三十八分为实以中积日数为法除之得火星小轮上一日之行为二十七分四十一秒四十微一年为一百六十八度三十分三十六秒

火星天最高行【第四章】

古多禄某总积四千八百五十二年【本算第三测】用火星冲太阳平行得火星天之最髙在鹑首二十五度半此时太阳躔星纪宫某度距最低为三十五度当时太阳最髙在实沈宫十度【其冲析木同度】均数为一度半号为加又日细行为六十分火星为二十五分【冲日为逆行】两行并之得一日太阳与火星相近为一度二十五分用三率法一日相近行若干以行太阳均数一度半用时若干得廿五时廿四分乃火星预先冲太阳之实经度依此法补前第一第二测再算得当时最髙在鹑首廿八度十五分

今第谷近测总积六千三百十三年为万厯二十八年庚子测得火星在鹑火二十八度五十五分中积为一千四百六十一年行度为【古今两经度较为中积之行】三十度二十七分以年数除之入法得一年之行为一分十四秒五十二微百年行二度四分四十七秒三十九微

万厯庚子至崇祯戊辰厯元距廿八年以鹑火廿八度五十五分加廿八年之行得廿九度三十分表上有七宫【从冬至起】廿九度三十分加一年之行则得第二第三年等记今测火星冲太阳实行十四测【第五章】

【此第谷及其门人所测更密更细今为本厯厯测】

先具第谷所用之率

平行如上

两心差【用第谷图两小轮下冇图】为百万分之一四八四○小均轮半径为三七一○【两数并之为一八五五○比多禄某及谷白泥小一百分或今用太阳实行古用太阳平行而取火星之冲然细测密合如此当依为法】

一测总积六千二百九十三年为万厯八年庚辰十一月十八日未初二刻【本方距顺天府为二十八刻又西厯月号于大统厯异然有太阳所躔之度可考因得知为大统厯之某月日余效此】测算得火星视行在实沈宫六度二十七分半大正冲太阳之视行太阳躔析木宫同度

右测用表算得火星平行距最髙为二百六十七度十一分十一秒加均数十度三十三分又算最髙末得实沈宫六度二十七分半与测正合【算法见本厯诸表用法】

二测总积六千二百九十五年为万厯十年壬午十二月二十八日申正测得火星冲太阳在鹑首宫十六度五十四分半因表算得五十五分半差一分太阳躔其冲星纪宫同度

三测总积六千二百九十八年为万厯十三年乙酉二月初一日辰初一刻测得火星在鹑火宫二十一度三十五分算得三十七分差二分太阳躔其冲?枵宫同度

四测总积六千三百年为万厯十五年丁亥三月初六日戌初刻半测得火星在鹑尾宫二十五度四十二分依法算亦得四十二分不差太阳躔娵訾宫同度

五测总积六千三百二年为万厯十七年己丑四月十四日酉正一刻半测得火星在大火宫四度二十三分算得二十六分差三分太阳躔大梁宫同度

六测总积六千三百四年为万厯十九年辛卯六月初八日戌初三刻测得火星在析木宫二十六度四十二分算得四十五分二十秒差三分二十秒太阳躔实沈宫同度

七测总积六千三百六年为万厯二十一年癸巳八月二十六日卯初二刻测得火星在娵訾宫十二度十五分算得十四分强不差太阳躔鹑尾宫同度

八测总积六千三百八年为万厯二十三年乙未十月二十一日午正二刻十分测得火星在大梁宫十七度三十分强算得二十九分强差一分太阳躔大火宫同度

九测总积六千三百一十年为万厯二十五年丁酉十二月十四日寅正测得火星在鹑首宫二度二十七分算得二十六分差一分太阳躔星纪宫同度

十测总积六千三百一十三年为万厯二十八年庚子正月十九日丑正测得火星在鹑火宫八度三十七分算为三十七分强不差太阳躔?枵宫同度

十一测总积六千三百一十五年为万厯三十年壬寅二月二十一日丑正一刻测得火星在鹑尾宫一十二度二十六分强算得二十四分差二分太阳在娵訾宫同度

十二测总积六千三百一十七年为万厯三十二年甲辰三月二十九日寅正一刻五分测得火星在寿星宫十八度三十六分算亦如之正合太阳躔降娄宫同度

十三测总积六千三百二十一年为万厯三十六年戊申七月二十四日未正测得火星在娵訾宫十一度十分算得十三分差三分太阳在鹑尾宫同度

十四测总积六千三百二十三年为万厯三十八年庚戌十月初九日寅正三刻五分测得火星在降娄宫二十五度

以上十四测大槩与算相合最差不过三分盖因测器或人目有不到又或其圏之半径畧差难定其准然算之差在三分内谓之极微其合于测亦谓之亲切矣火星岁圏大小古法【第六章】

岁圏解见总论及土木二星厯指不重着

古多禄某因本图【丁地心子均圏心巳本圏心癸申均圏弧午未引数圏等】曰申丙岁

圏之半径比子申均圏半径

为六十分之三十九分有半

【古以六十为申子半径今用全数】或十万分

之六五八○○

凡有先引数癸巳申角可算

丁申己角先均数之度分又

凡有星距冲太阳之处若干度分置戊壬【戊为火星冲太阳之处置火星逆行初将留在壬】用申壬丁三角形可算申丁壬角乃次均之数于癸丁申实行之角并加得癸丁壬角乃火星视行距最髙度分

谷白泥再测因本图法算所得于多禄某大同小异二法各有表用太阳平行然后人细测于所算对有不合天因以今时测算定为本厯之元

火星岁圏大小新测【第七章】

第谷及其门人密测密算厯年滋久不厌精详末得火星天之心非地心乃太阳体轮为火星自行之心

系凡太阳躔本轮最髙近处而火星在其冲第一加减之数视为大若太阳在最髙冲而火星在其冲则第一加减之数视为小髙低前后相冲之均数亦有损益何者太阳逺火星心近则视差大【置二测置引数为等所得之均数大小不繇本轮别有他故因从太阳】反是则太阳近地火星处逺故均数小

如图丁地心乙甲为太阳近逺两处各为心同径作己戊

庚己丙庚两弧火星圏弧也日

在乙逺火星行之心在丙为近

于地日在甲近于地火星在戊

逺处均数大小从太阳逺近而

生理也【见本厯首卷】

又曰凡测火星在本天最髙其岁圏半径比测火星在最髙冲所得更大与土木二星及视学之法相反论在最髙极逺处宜见之小在最髙冲极近处宜见之大乃依所测不然盖在最髙最庳之中其大小有比例数具下文

从上二论试之格白尔曾着有书备详测算诸论颇繁今姑译其法之一二如测火星岁圏之半径先择火星在本天最髙低之中而免其差之一根

第一测总积六千三百七年为万厯二十二年甲午【西厯】正月初三日戌初第谷测得火星在降娄宫十八度三十八分此时因平行表算得火星平行【从冬至起算】为一百三十八度二十三分三十秒引数为二百五十九度四十二分二十秒用两心差算先均数【法见用法】得十度三十三分三十秒其号为加加之得一百四十八度五十七分乃实经度也时太阳视行躔星纪宫二十三度三十分四十秒于火星经度相减得一百二十五度二十六分二十秒以减半周得五十七度三十三分四十秒乃岁圏上从极逺处之引数也又测火星得【从冬至起】一百○八度三十八分以先算实经度减之得四十度十九分乃岁圏之均数也设数求火星岁圏半径

图说设乙以太阳之体轮为心作丙丁壬火星本行之圏作丙丁线丙为火星最髙丁为其冲从丙过丁右行取引数之度止壬于壬心作乙壬线子丑癸圏从子极逺处右行取子癸丑引数之度以丑为心作卯寅辰均轮

又作壬丑两心之线从辰极

近处左行过寅卯数引数之

倍必满一周余辰寅弧一百

五十九度二十四分四十秒

火星体在寅又作乙寅线成

寅乙壬均角十度有竒又作乙寅甲角四十度有竒乃年岁行均角又取甲为地心作乙戊己圏乃太阳所行之圏也又作戊甲己线与乙寅线平行

星之行从丙过丁到壬右行乙乃日轮亦右行则乙辛己回于乙之行也小均轮心丑行从子午癸到丑星体寅行从辰向寅卯回辰今置到寅以便于算分图先用引数求前均数乃壬乙寅角也

壬丑寅形有寅丑线乃均圏之半径即三七一○分有丑壬线乃不同心圏之半径即一四八四○又有壬丑寅

角为一百五十九度二十四

分四十秒【引数之倍内减全周余者乃辰寅弧

也】求壬寅边依法算得一八

三五九又求寅壬丑角得四

度○五分二十秒 此丑壬寅角为丑巳弧之数加于子癸丑引数之弧共得二百六十三度四十七分四十秒减子午癸半周余癸巳弧八十三度四十七分四十秒乃己壬癸角也

次壬乙寅形有乙壬全数【本天半径】先亦得寅壬边寅壬乙角【癸丑己弧】求寅乙壬角得十度三十三分三十秒乃先均数也又求寅乙边得九九六九七

又甲乙寅角形先得乙寅边有

甲乙寅角【年岁行引数太阳经行距火星实经】五

十四度三十五分四十秒又有

甲寅乙角【岁行均数先测后算得四十度十九分】

求甲乙线乃岁圏之半径得六四七三八乃太阳在最髙冲近处火星在中距之处岁圏半径之数也【乙壬恒为全数】

依上图算法之序反覆测算以求岁圏半径之数其法不一今约译四测于左

第一测总积六千三百十三年为万厯二十八年庚子【西厯】三月初六日【本地】戌正二刻测得火星在鹑首宫二十九度十八分此时依算得实行为鹑火二十九度三十二分距过本天最髙为五十分太阳躔娵訾宫二十六度三十七分相减得火星实经度距太阳为二百○七度四分【从火星顺天到太阳实居】或取其余得一百五十二度五十六分如上图为甲乙寅角又求甲寅线得一一一二九七以实经与视测相减得较为三十度十四分○五秒乃甲寅乙角也依法求甲乙线得六六五八六

第二测总积六千三百年为万厯十五年丁亥【西厯】正月初一日辰初初刻八分测得火星在寿星宫一度四分三十六秒此时依表得实行在鹑火宫二十七度十七分二十秒未到本天最髙为一度六分太阳细行躔星纪宫二十度三十九分三十六秒两数相减得一百四十三度四十七分十五秒即寅乙甲角也又以先法求甲寅为一一一二九五又以火星实经减其视测之经度得三十三度四十七分十五秒甲寅乙角也依法求甲乙得六五六九一

以上二测火星实经度皆近于本天之最髙【先定最髙在鹑尾初度二测距几度未到因视法最髙左右几度不辨髙低近逺】而免本天髙低之差根其所得岁圏半径两数之差为十万分之八百九十五分若问其故则格白尔有曰太阳于地近逺不同第一测太阳在中距之处为二分之时第二测太阳在极近之处为冬至时也太阳近斯火星岁圏半径更小与他星逈别再以二测徴之

第三测总积六千三百四年为万厯十九年辛卯七月二十六日戌初初刻十二分测得火星在星纪宫十八度三十六分此时实行在娵訾宫四度二十四分求寅甲线得八八九一四九分也太阳躔寿星宫十二度四十五分四十秒以火星实经减之得二百一十八度二十一分四十秒【从火星顺天数至大阳】其余为一百四十一度三十八分二十秒乃寅乙甲角也又以实经视测两数相减得较为四十五度四十八分乃甲寅乙角也以求甲乙得六四○七七

第四测总积六千三百二年为万厯十七年己丑十一月初一日酉正十分测得火星在星纪宫二十度五十九分十五秒此时火星实经在?枵宫十度二十九分五十五秒太阳躔大火宫十九度十四分两数相减得一百度四十一分为寅乙甲角也寅乙线为八八八八○○又以实经减视测得较为三十八度五十五分四十秒乃甲寅乙角也用法求甲乙得六三三九四

以上二测火星在本最髙冲之近按常法宜比前二测岁圏半径视更大然视更小又后二测之差为十万分之六八三盖二测太阳于地更近火星小轮更小

右格白尔于此时始觉火星岁圏之大小与他星有异不可一例推算因细细测算乆而不倦其心得备着于书今不尽译但取其大小两界为千万分之二千二百二十五【本天半径为全数千万】

算岁圏大小两界【第八章】

上测太阳未到髙庳之两极则火星岁圏半径大小未定用以成表宜先定大小两极之较如图乙丙丁戊为太

阳小轮【日躔厯指用不同心圏以齐太阳盈缩之行然亦可用小

轮之图盖所得之均数无二今借用以详火星之行】乙为其最

髙丁为最髙冲丙戊为中距之两处

○上第一测火星在本天最髙免本

天之差太阳在中距用上数算得太阳距最髙冲丁为八十度五十八分丁巳弧也其正?己庚其余?庚甲第二测火星亦在本天最髙近太阳距最低丁为十五度十一分丁辛弧也作辛癸辛壬两正余?线庚癸线为太阳距最低两处两余?之较【用表查丁辛丁己两弧之余?相减为庚癸数】为八○八○八三六○【全数为千万】用三率法庚癸某数得八九五【上一二测岁圏半径之差】乙丁全径【太阳髙低两较之界】若干算得二二一五乃火星岁圏大小繇太阳行之较数也【火星本天半径为十万】

若用第三四两测火星在最髙之冲因右法得二四一五两数差二百分平分之以加于小减于大得二三一五然须再用别测末得二三五方可作准用以为算火星在本天髙低受太阳之变今置太阳距地等处而免其差火星因本圏亦有岁圏半径大小之变试举一二徴之

上第一测太阳在中距地之处【娵訾二十七度约为髙低之中】岁圏半径得六六五八六第三测太阳亦在中距之处【寿星宫十二度距最髙九十六度第一测未到九十九度其差防】岁圏半径为六四○七七两数相减差二五○九乃第一测火星在本天最髙处之近当时最髙在鹑尾宫初星在鹑火第三测为逺星在星纪宫十八度此于最髙近逺乃为大小差之根

因前法求大差【用多测相比算定末所得】为千万分之二五八五○【乙壬全数也】若并太阳与火星两差相比约其子母数得十一与十则繇本天者为大从太阳者为小

算火星岁圏半径盈缩表【第九章】

用前图乙丁【全径】得大差【从太阳为二三五○○从本天为二五八五○】乙戊丁丙为引数之圏设乙戊己某弧求其余线乙庚曰乙甲丁全径得大差某数今乙庚某数得若干从乙最髙?隔一度求其余?用三率法排表如左

表用省文但书从太阳之差其从本天者用比例法乃十与十一初列先得数又下一位再列并之得本天之差查表时若有单度有分者则用中比例

用法

设太阳实引数【距最髙度分】入本宫本度分对行得数【先以比例法取双度外单度分秒之数】列书次以火星引数亦入表得数以十一乘以十而一所得两数并于岁圏极小半径之数即六三○二七五加之得火星当时岁圏半径之数火星诸行率【第十章】

火星最髙行一年行一分十四秒五十二防以百年计之行二度四分四十七秒三十二防约千年行二十度四十七分五十六秒三十防

火星平行一日行三十一分二十七秒以百日计之行五十二度二十四分二十六秒以一年三百六十五日计之为一百九十一度十七分○八秒

火星满周天之行以前二行计之为六百八十六日十九时【小时】四十二分十三秒

推算火星经度式【第十一章】

其一用三角形及前平行率算火星经度全假如第谷门人于总积六千三百二十六年为万厯四十一年癸丑三月【西厯】二十五日寅正测得火星体会合于井宿第五星【在距星东北新表为第五】当时此星经度为鹑首宫四度三十一分二十秒【在厯元前十五年恒星之行六年为五分则十五年计行十四分于新表减之得数】黄纬度为二度十一分北【本夜用多仪屡测无可疑】

此时因平行表得火星平行距冬至二百一十七度三十四分【顺天数在鹑火宫七度】又距本天最髙为三百三十八度二十七分四十秒引数也又求太阳实行得降娄宫十四度三十一分二十秒又求其实距最髙得二百七十八度四十二分如上图

甲为地心作辛乙己太阳所行之圏任作甲庚线定庚为太阳最髙顺天数太阳实引数沿庚己乙弧到乙乙为太阳之体又以乙为心作壬丙丁圏即火星本轮也又作丙乙线乃火星髙低之线【先置庚为太阳最髙在鹑首约六度火星髙在鹑尾初如辛则丙乙宜为辛甲之平行丙当鹑尾初度】从丙取丙丁壬弧【火星引数】又以壬为心作子癸圏及壬乙线又取子癸丑引数之弧作

壬丑卯线又丑为心作卯寅

圏从辰过卯取引数之倍【减全

周】如卯寅弧寅乃火星体之

处作图如上

一丑寅壬形有丑寅丑壬两

边【数见前】有壬丑寅角【引数以满周少二十一度三十二分二十秒倍之得四十三度四分四十秒】求丑壬寅角得十一度四十八分又求壬寅边得百万分之一二三八八○【乙壬全数】于子壬丑引数角加丑壬寅角并之得子壬寅角为三十三度二十分

二乙壬寅形有乙壬壬寅两边及寅壬乙角【子壬寅之角以满半周之余】为一百四十六度三十九分四十秒求寅乙壬先均角算得三度三十一分三十秒其号为加【引数过半周故也】于平行加之得火星实行为二百廿一度五分三十秒或鹑火宫十一度又求寅乙边得一一○五三○五【百万全数】

三甲乙寅形有乙寅边又有寅乙甲角【或寅乙未角火星实经寅防未到太阳冲之差太阳躔降娄宫其冲为寿星宫火星在鹑火宫未至日冲所少为六十三度二十五分寅乙未角也】又有甲乙岁圏半径之数【因上论以太阳实引九宫八度入表得一三五二七先差

又以火星实行引数十一宫十一度入表得二二九二四此数

以十一乘十而一得二五二一六此数先差及岁圏极小半径

六三○二七五上三数并之得六六九○一八乃当时岁圈半

径之数甲乙也】为六六九○一八分因

法求甲寅乙角得三十六度三

十五分十五秒乃岁圏次均数

也此时火星过日之会而将冲

故此次均数之号为减【于实经内减之】得鹑首宫四度三十分十五秒所算比所测少一分极防之差也

其二用表算

崇祯四年闰十一月十七日戌初于顺天府亲测火星见轩辕大星与火星及本座第十三星并在一直线【用界尺定之】又见火星在本座第十三星南为四十分【用月体比之】查

恒星表求第

十三星黄经

度得鹑火宫

二十二度四

十七分加五

年之行【距新厯元之行】为四分得五十一分又因两心直线向东则置二十三度强又恒星之纬为四度五十二分火星纬四度十二分然火星光大?目测以界尺或移几分故难定二三分内也

以设时查火星平行表【因过冬至宜用壬申年之根又测日属丙寅距根庚子为二十六日又从子正至戌初算得一十九小时以各数查本表排算如图】以引数查表得均数为四度○五分四十秒其号为加以得岁均用三角形求之如上图

一先用壬丑寅形夫形有丑寅丑壬两腰【如前等】有壬丑寅角【引数以满全周所余之倍数】二十五度有竒求寅壬边得一二七九○【乙壬为全数百万】又求丑壬寅角得十一度五十四分又以丑壬寅角并加于子壬丑角【引数之余】得三十八度有竒乃子壬寅角也

二壬乙寅形有壬寅壬乙两腰及寅壬乙角【子壬寅之余】求壬乙寅角得四度○五分先均数也查表之号为加则以加于平行得七宫八度三十二分又求寅乙边得一一○三五八○

三用诸表求甲乙岁圏半径之数以本时太阳实引数【用日躔表算得六宫二十二度○一分从最髙起】入表得八五七又以火星引数入表得三四九八八以两数及半径小数六三○二七五并之得六五五二六三甲乙边也太阳实躔○宫二

十八度四分减火

星实经数得五宫

十九度三十分【顺天

算】即乙甲寅角也

四甲乙寅形有甲

乙乙寅两腰及甲

角求甲寅乙角得十四度三十四分

因火星未冲太阳法宜加则于实经

加之得七宫二十二分四十九秒或

鹑火宫二十三度七分算与测合

右测亲切可用为徴火星表之厯元

新法算书卷三十九